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Problema 1. Fie A =

(
a b

c d

)
∈ M2(Z); spunem că A e mărginită dacă există un număr real

pozitiv C astfel ı̂ncât max{|an|, |bn|, |cn|, |dn|} < C pentru orice număr natural nenul n, unde

An =

(
an bn
cn dn

)
.

.

a) Dacă A e mărginită arătaţi că A2 e mărginită.

b) Fie A ∈M2(Z) cu det(A) = 0; arătaţi că există λ ∈ Z astfel ı̂ncât A2 = λA. Arătaţi că dacă, ı̂n

plus, A e mărginită atunci An+2 = An pentru orice n ≥ 2.

c) Fie B ∈ M2(Z) cu det(B) 6= 0. Arătaţi că B este mărginită dacă şi numai dacă există n ∈ N∗

astfel ı̂ncât Bn = I2 (unde I2 este matricea identitate).

d) Demonstraţi că, dacă D ∈ M2(Z) este o matrice mărginită, atunci mulţimea {Dn|n ∈ N∗} are

cel mult 6 elemente.

Rezolvări subiectul 1.

a) Şirurile {|a2n|, |b2n|, |c2n|, |d2n|} sunt subşiruri respectiv ale şirurilor {|an|, |bn|, |cn|, |dn|} deci

rămân mărginite.

b) Deoarece A este singulară, din formula Cayley-Hamilton deducem A2 = λ · A cu λ = Tr(A).

Cum A ∈ M2(Z) deducem Tr(A) ∈ Z. Dacă A este mărginită, atunci |λ| ≤ 1, de unde avem că fie

A2 = 02 (unde 02 este matricea nulă), fie A2 = ±A de unde deducem A3 = A; ı̂n ambele situaţii avem

deci An+2 = An pentru n ≥ 2.

c) Considerăm mulţimea M := {M = (mij)i,j=1,2 ∈ M2×2(Z)|mij ∈ [−C,C]}. Evident, M este o

mulţime finită. Din enunţ rezultă că Bn ∈M pentru orice n ∈ N∗ iar cumM este finită deducem că

vor exista două valori distincte n1 > n2 naturale astfel ı̂ncât Bn1 = Bn2 ; cum det(B) 6= 0 deducem

Bn1−n2 = I. Reciproc, dacă există n ∈ N∗ astfel ı̂ncât Bn = I2 atunci şirul puterilor {Bn|n ∈ N∗} va

fi periodic, deci matricea B este mărginită.

d) Soluţia 1. Dacă D este singulară, concluzia rezultă imediat din punctul b). Dacă D are de-

terminant nenul, utilizând punctul c) deducem det(D) = ±1. Considerăm polinoamele P (X) =

X2 − tX + det(D) (unde t := Tr(D)) şi F (X) = Xn − 1 (unde n este numărul pentru care Bn = I2)

din Cayley-Hamilton şi enunţ avem că F (D) = P (D) = O2.



Dacă P nu divide F ı̂n inelul de polinoame R[X], atunci restul r(X) este polinom de gradul 1,

r(X) = aX + b, şi avem r(D) = O2. Deci aD + bI2 = O2 de unde găsim imediat că D = ±I2.
Dacă P divide pe F , deducem că orice rădăcină (complexă ) a lui P este o rădăcină a lui F , deci

este rădăcină de ordin n a unităţii. Dacă α, β sunt rădăcini de ordin n a unităţii cu α + β = t ∈ Z
şi αβ = det(D) = ±1 vedem că dacă det(D) = −1 atunci neapărat t = 0, iar ı̂n cazul det(D) = 1

atunci t ∈ {−2,−1, 0, 1, 2}. Cazurile t = ±2 se elimină uşor pentru că ı̂n aceste situaţii polinomul F

ar avea o rădăcină dublă.

Vedem deci că A verifică una dintre ecuaţiile: D2 = ±I2 sau D2 ± D + I2 = O2. În toate aceste

cazuri rezultă D6 = I2, de unde concluzia.

d)Soluţia 2 - Ideea de demonstraţie. Pentru cel puţin un subşir {xn} dintre şirurile {an}, {bn}, {cn}, {dn}
există o mulţime infinită M ⊂ N astfel ı̂ncât xn 6= 0 pentru orice n ∈ M , altfel Dn = 02 pen-

tru n suficient de mare. Fie t := Tr(D); din D2 + I2 = tD deducem (D2 + I2)
n = tnDn de unde

n∑
k=0

Ck
nD

2k = tnDn; aceasta implică
n∑

k=0

Ck
nx2k = tnxn. Trecând la module ı̂n această egalitate şi ţinând

cont că |x2k| ≤ C pentru orice k şi |xn| ≥ 1 pentru orice n ∈ M , deducem C

(
n∑

k=0

Ck
n

)
≥ tn pentru

orice n ∈M , deci C · 2n ≥ |t|n pentru orice n ∈M . Cum M este infinită deducem |t| ≤ 2.

Ca atare, D verifică o ecuaţie de forma D2± I2 = 02 sau D2±D± I2 = 02 sau D2± 2D± I2 = O2.

Primul caz ne conduce direct la concluzie. Excludem cazurile D2 = 2D + I2 respectiv D2 = D + I2
după cum urmează. Fie Tn := Tr(Dn); atunci şirul {Tn} satisface recurenţa Tn+2 = 2Tn+1 +Tn (resp.

Tn+2 = Tn+1 + Tn) cu condiţiile iniţiale T0 = T1 = 2 (respectiv T0 = 2, T1 = 1). În ambele situaţii

rezultă că şirul {Tn} e nemărginit, contradicţie cu faptul că |Tn| ≤ 2C pentru orice n.

În cazul D2 = 2D− I2, punând B := D− I2 rezultă imediat B2 = O2 şi deci Dn = I2 + nB pentru

orice n; cum D e mărginită rezultă B = O2 deci D = I2. Celelalte cazuri duc direct la concluzie,

eventual schimbând D cu −D.



Problema 2. Considerăm mulţimile

M = {f : [0, 1]→ R |f este de două ori derivabilă, f ′′ continuă şi f ′(0) = f ′(1) = f(0) = 0, f(1) = 1},

N = {g : [0, 1]→ R |g continuă,

1∫
0

g(x)dx = 0,

1∫
0

xg(x)dx = 1}.

a) Fie a, b ∈ R, a 6= 0 şi g0 : [0, 1]→ R, g0(x) = ax+ b. Determinaţi a şi b astfel ı̂ncât g0 ∈ N .

b) Demonstraţi că pentru orice g ∈ N , funcţia f : [0, 1] → R, f(x) =

∫ x

0

(t − x)g(t)dt, aparţine

lui M.

c) Fie f ∈ M şi k > 0 astfel ı̂ncât |f ′′(x)| ≤ k pentru orice x ∈ [0, 1]. Arătaţi că pentru orice

x ∈ [0, 1] avem |f ′(x)| ≤ kmin{x, 1 − x} şi apoi, utilizând eventual această inegalitate, demonstraţi

că |f(x)| ≤ k
4
.

d) Demonstraţi că pentru orice f ∈ M şi g ∈ N există x0, y0 ∈ [0, 1] astfel ı̂ncât |f ′′(x0)| ≥ 4 şi

|g(y0)| ≥ 4.

Rezolvări subiectul 2.

a) Deoarece g0 ∈ N obţinem atunci
∫ 1

0
(ax + b)dx = 0 şi

∫ 1

0
(ax2 + bx)dx = 1, de unde rezultă

a
2

+ b = 0 şi a
3

+ b
2

= 1. Rezolvând sistemul de 2 ecuaţii cu 2 necunoscute obţinem a = 12, b = −6 şi

implicit funcţia g0(x) = 12x− 6.

b) Cum f(x) =
∫ x

0
tg(t)dt− x

∫ x

0
g(t)dt rezultă că f este derivabilă şi

f ′(x) = xg(x)−
x∫

0

g(t)dt− xg(x) = −
x∫

0

g(t)dt.

Din faptul că f ′(x) = −
∫ x

0
g(t)dt obţinem că f ′ este derivabilă şi f ′′(x) = −g(x), (∀) x ∈ [0, 1].

Deci f este de două ori derivabilă, f ′′ este continuă (pentru că g este continuă) şi

f(0) = f ′(0) = 0, f ′(1) = −
1∫

0

g(t)dt = 0,

f(1) =

1∫
0

tg(t)dt−
1∫

0

g(t)dt = 1− 0 = 1 (deoarece g ∈ N ).

c) Soluţia 1. Observăm că f ′(x) =
∫ x

0
f ′′(t)dt =

∫ x

1
f ′′(t)dt (∀) x ∈ [0, 1], deci

|f ′(x)| =

∣∣∣∣∣∣
x∫

0

f ′′(t)dt

∣∣∣∣∣∣ ≤
x∫

0

|f ′′(t)|dt ≤ k · x,

|f ′(x)| =

∣∣∣∣∣∣
x∫

1

f ′′(t)dt

∣∣∣∣∣∣ ≤
x∫

1

|f ′′(t)|dt ≤ k · (1− x),

de unde obţinem |f ′(x)| ≤ kmin{x, 1− x}.



Pentru a demonstra a doua inegalitate, folosind f(x) =
∫ x

0
f ′(t)dt rezultă că

|f(x)| ≤

∣∣∣∣∣∣
x∫

0

f ′(t)dt

∣∣∣∣∣∣ ≤
x∫

0

|f ′(t)|dt ≤
1∫

0

|f ′(t)|dt.

Folosind inegalitatea demonstrată ı̂n prima parte a lui c) şi ı̂nlocuind ı̂n ultima integrală obţinem

1∫
0

|f ′(t)|dt ≤
1∫

0

kmin{t, 1− t}dt = k


1
2∫

0

tdt+

1∫
1
2

(1− t)dt

 =

k

(
t2

2

∣∣∣ 12
0

+ t
∣∣∣1
1
2

− t2

2

∣∣∣1
1
2

)
= k

(
1

8
+ 1− 1

2
− 1

2
+

1

8

)
=
k

4
.

Soluţia 2. Fie f ∈ M. Pentru orice x > 0, x ∈ [0, 1], aplicăm teorema lui Lagrange funcţiei f ′ pe

[0, x]. Rezultă că există x′ ∈ (0, x) astfel ca

f ′(x)− f ′(0)

x− 0
= f ′′(x′).

Deci |f ′(x)| = |f ′′(x′)| ·x ≤ kx. Pentru orice x < 1, aplicăm teorema lui Lagrange funcţiei f ′ pe [x, 1].

Rezultă că există x′′ ∈ (x, 1) astfel ı̂ncât

f ′(1)− f ′(x)

1− x
= f ′′(x′′).

Deci |f ′(x)| = |f ′′(x′′)| · (1 − x) ≤ k(1 − x). Deducem că |f ′(x)| ≤ kmin{x, 1 − x} pentru orice

x ∈ [0, 1]. Cum f ′(0) = f ′(1) = 0, avem |f ′(x)| ≤ kmin{x, 1− x}, pentru orice x ∈ [0, 1].

d) Soluţia 1. Fie f ∈ M. Cum |f ′′| continuă pe [0, 1], atunci |f ′′| este mărginită şi ı̂şi atinge

marginile. Fie x0 ∈ [0, 1] astfel ı̂ncât |f ′′(x0)| = max |f ′′(x)| = k0. Atunci rezultă că |f ′′(x)| ≤ k0,

(∀) x ∈ [0, 1]. Folosind c) avem că |f(x)| ≤ k0
4

, (∀) x ∈ [0, 1], deci ı̂n particular |f(1)| ≤ k0
4

şi cum

f(1) = 1 rezultă că k0 ≥ 4 şi implicit |f ′′(x0)| ≥ 4.

Fie g ∈ N . Folosind b) deducem că f ∈ M, unde f(x) =
∫ x

0
(t − x)g(t)dt. În plus avem că

f ′′(x) = −g(x), deci există y0 ∈ [0, 1] astfel ı̂ncât |f ′′(y0)| = |g(y0)| ≥ 4.

Soluţia 2. Fie g ∈ N . Presupunem că |g(x)| < 4, pentru orice x ∈ [0, 1]. Cum g este continuă pe

[0, 1], din teorema lui Weierstrass există M > 0, M = max
x∈[0,1]

|g(x)| şi M < 4.

Avem∫ 1

0

g(x)g0(x)dx =

∫ 1

0

(12x− 6)g(x)dx = 12

∫ 1

0

xg(x)dx− 6

∫ 1

0

g(x)dx = 12 · 1− 0 = 12.

Deci

12 =

∫ 1

0

(12x− 6)g(x)dx ≤
∫ 1

0

|12x− 6| · |g(x)|dx ≤M

∫ 1

0

|12x− 6|dx

= M

(∫ 1/2

0

(6− 12x)dx+

∫ 1

1/2

(12x− 6)dx

)
= 3M < 12,

ceea ce reprezintă o contradicţie. Aşadar există y0 ∈ [0, 1] cu |g(y0)| ≥ 4.



Problema 3. În interiorul triunghiului ABC se alege la ı̂ntâmplare punctul D. Paralelele duse prin

D la BC, CA, respectiv AB intersectează laturile triunghiului ı̂n punctele P şi S, N şi R, respectiv

M şi Q (unde M,N ∈ BC; P,Q ∈ AC; R, S ∈ AB).

Demonstraţi că:

a) suma perimetrelor triunghiurilor DMN , DPQ şi DRS este egală cu perimetrul triunghiului ABC;

b) dacă D este centrul de greutate al triunghiului ABC atunci el este centru de greutate şi al tri-

unghiului MPR;

c) dacă triunghiurile MPR şi SNQ au acelaşi centru de greutate, atunci acesta coincide cu D;

d) suma ariilor triunghiurilor DMN , DPQ şi DRS este cel puţin o treime din aria triunghiului ABC,

iar aria triunghiului MPR este cel mult egală cu o treime din aria triunghiului ABC.

Rezolvări subiectul 3.

a) Deoarece BMDS,CNDP şi AQDR sunt paralelograme, avem: DS = BM ;DP = NC;DM =

SB;DQ = RA;DN = PC;DR = AQ.

Se obţine imediat, de aici, că

PDMN + PDPQ + PDRS = PABC ,

unde PDMN este o notaţie pentru perimetrul triunghiului DMN (şi analogele).



b) Soluţia 1. Avem
−−→
DP = 1

3

−−→
BC,

−−→
DR = 1

3

−→
CA şi

−−→
DM = 1

3

−→
AB. Deoarece

−→
AB +

−−→
BC +

−→
CA =

−→
0

deducem
−−→
DP +

−−→
DR+

−−→
DM =

−→
0 de unde rezultă că D este centrul de greutate al triunghiului MRP.

Soluţia 2. Dacă D este centrul de greutate al triunghiului ABC, atunci construcţia din enunţ

partajează triunghiul ABC ı̂n nouă triunghiuri care (se vede uşor că) sunt congruente (ca ı̂n figura

de mai jos).

În figura de mai sus, observăm că patrulaterul DPQR este un paralelogram. De aceea, dreapta

MD trece prin mijlocul segmentului PR, deci D se află pe mediana din M a triunghiului MPR.

Analog, deducem că punctul D se află şi pe mediana din P a triunghiului MPR, adică D este centrul

de greutate al acestui triunghi.

c) Fie G1 şi G2 centrele de greutate ale triunghiurilor MPR, respectiv NQS. Atunci:

3
−−→
DG1 =

−−→
DM +

−−→
DP +

−−→
DR; 3

−−→
DG2 =

−−→
DN +

−−→
DQ+

−→
DS.

Deducem că

(1) G1 = G2 ⇔
−−→
DG1 =

−−→
DG2 ⇔

−−→
DM +

−−→
DP +

−−→
DR =

−−→
DN +

−−→
DQ+

−→
DS

adică

G1 = G2 ⇔
−−→
MN +

−→
DS =

−→
QP +

−−→
DR.

Deoarece PS ‖ BC şi NR ‖ AC, vectorii
−−→
MN +

−→
DS, respectiv

−→
QP +

−−→
DR au direcţiile date de

dreptele concurente BC, respectiv AC. De aceea, aceşti vectori pot fi egali doar dacă sunt vectori

nuli. Deducem de aici că

G1 = G2 ⇒MN = SD şi PQ = RD.

Un raţionament analog (̂ın care grupăm altfel termenii din (1) conduce la concluzia că

G1 = G2 ⇒MN = DP,PQ = DN,RS = DQ,RS = DM.

Am arătat deci că, dacă G1 = G2, punctul D este mijlocul fiecăruia din segmentele MQ,NR,PS.

Putem folosi aceleaşi argumente ca ı̂n demonstraţia punctului b) pentru a deduce că D este centrul

de greutate (comun) al triunghiurilor MPR şi SNQ.

d) Observăm mai ı̂ntâi că triunghiurile DMN,QDP şi RSD sunt asemenea cu triunghiul ABC

(şi, desigur, asemenea ı̂ntre ele); notăm x, y, respectiv z rapoartele de asemănare dintre aceste trei

triunghiuri şi triunghiul ABC (deci: MN/BC = x, PQ/AC = y,RS/AB = z).



Deoarece MN +DP + SD = MN +NC +BM = BC, deducem că

1 =
MN

BC
+
DP

BC
+
SD

BC
= x+ y + z.

Din asemănarea triunghiurilor DMN,QDP şi RSD cu triunghiul ABC, având rapoartele de

asemănare x, y, respectiv z, deducem că

ADMN = x2AABC ;AQDP = y2AABC ;ARSD = z2AABC ,

unde ADMN este o notaţie pentru aria triunghiului DMN (şi analogele).

Folosind, de exemplu, inegalitatea

3(a2 + b2 + c2) ≥ (a+ b+ c)2,

(valabilă pentru orice trei numere reale a, b, c), precum şi faptul că x+ y + z = 1, deducem că

ADMN + AQDP + ARSD = (x2 + y2 + z2)AABC ≥
(x+ y + z)2

3
AABC =

1

3
AABC .

Pentru a doua parte a punctului d), indicăm ı̂n continuare mai multe posibile soluţii.

Soluţia 1.

Observăm că

AMPR = ADMP + ADPR + ADRM .

Pe de altă parte:

ADMP = ADCP =
1

2
ADNCP ,

(analog pentru ADPR şi ADRM), deci

AMPR = ADMP+ADPR+ADRM =
1

2
(ABMDS+ACNDP+AAQDR) =

1

2
(AABC−(ADMN+ADPQ+ADQR)).

Folosind rezultatul anterior, deducem că

AMPR ≤
1

2
· 2AABC

3
=

1

3
AABC .

Soluţia 2 - Ideea de demonstraţie.

Exprimăm aria triunghiului MPR ca diferenţa ı̂ntre aria triunghiului ABC şi suma ariilor triunghi-

urilor BMR,CPM şi ARP . Ne folosim de egalitatea:

ABMR

ABAC

=
BM

BC
· BR
BA

= z(x+ z).

Procedând analog pentru celelalte două triunghiuri, obţinem:

AMPR = (1− z(x+ z)− y(z + y)− x(y + x)) · AABC = (xy + xz + yz) · AABC

(am ţinut cont de relaţia x+ y+ z = 1). Deoarece 3(xy+xz+ yz) ≤ (x+ y+ z)2 = 1, obţinem relaţia

din enunţ.

Soluţia 3 -Ideea de demonstraţie.

Observăm că
−−→
DM = (x+ y)

−−→
DB + z

−−→
DC, deoarece BM

BC
= SD

BC
= z, iar x+ y + z = 1. Analog:

−−→
DP = (y + z)

−−→
DC + x

−−→
DA;

−−→
DR = (x+ z)

−−→
DA+ y

−−→
DB.



Considerăm un sistem de axe ortogonale, cu originea ı̂n D şi exprimăm aria triunghiului MPR cu

ajutorul unui determinant; folosind egalitatea x+ y+ z = 1, pentru a ı̂nlocui numerele de pe una din

liniile determinatului, obţinem că:

AMPR = (xy + yz + zx) · AABC ,

de unde se obţine inegalitatea cerută.


