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pozitiv C' astfel incat max{|a,|, |b,|, |cal, |dn|} < C pentru orice numar natural nenul n, unde
An — an bn
cn dn )

a) Dacd A e marginitd ardtati ci A? e marginita.

Problema 1. Fie A = < ) € My(Z); spunem ca A e mdarginita daca existd un numar real

b) Fie A € My(Z) cu det(A) = 0; ardtati ca exista \ € Z astfel incat A? = AA. Ardtati cd daci, in
plus, A e marginita atunci A"*2 = A" pentru orice n > 2.

c¢) Fie B € My(Z) cu det(B) # 0. Aratati ca B este marginita daca si numai daca exista n € N*
astfel incat B" = I, (unde I, este matricea identitate).

d) Demonstrati ca, daca D € My(Z) este o matrice marginita, atunci multimea {D"|n € N*} are
cel mult 6 elemente.

Rezolvari subiectul 1.

a) Sirurile {|as,l,|bonl, |can|, |d2n|} sunt subsiruri respectiv ale sirurilor {|au|, |ba|, |cnl, |dn|} deci
raman marginite.

b) Deoarece A este singulara, din formula Cayley-Hamilton deducem A? = X - A cu A = Tr(A).
Cum A € My(Z) deducem Tr(A) € Z. Daca A este marginita, atunci |[A| < 1, de unde avem ca fie
A% = 0y (unde 0, este matricea nuld), fie A2 = +A de unde deducem A* = A; in ambele situatii avem
deci A" = A" pentru n > 2.

c¢) Consideram multimea M = {M = (my;)ij=12 € Maxa(Z)|m;; € [-C,C|}. Evident, M este o
multime finita. Din enunt rezulta ca B" € M pentru orice n € N* iar cum M este finita deducem ca
vor exista doua valori distincte ny > ny naturale astfel incat B™ = B"?; cum det(B) # 0 deducem
B™~m = ], Reciproc, daca exista n € N* astfel incat B™ = I, atunci girul puterilor {B"|n € N*} va
fi periodic, deci matricea B este marginita.

d) Solutia 1. Daca D este singulara, concluzia rezulta imediat din punctul b). Daca D are de-
terminant nenul, utilizand punctul c¢) deducem det(D) = £1. Consideram polinoamele P(X) =
X? —tX +det(D) (unde t := Tr(D)) si F(X) = X" — 1 (unde n este numarul pentru care B" = I,)
din Cayley-Hamilton si enunt avem ca F(D) = P(D) = Os.



Daca P nu divide F in inelul de polinoame R[X], atunci restul r(X) este polinom de gradul 1,
r(X) =aX + b, i avem (D) = Os. Deci aD + bly = Oy de unde gasim imediat ca D = +1,.

Daca P divide pe F, deducem ca orice radacina (complexa ) a lui P este o radacina a lui F', deci
este radacina de ordin n a unitatii. Daca «a, 8 sunt radacini de ordin n a unitatiicu a+ 8 =t € Z
si af = det(D) = £1 vedem ca daca det(D) = —1 atunci neaparat ¢t = 0, iar in cazul det(D) = 1
atunci t € {—2,—1,0,1,2}. Cazurile t = £2 se elimina ugor pentru ca in aceste situatii polinomul F'
ar avea o radacina dubla.

Vedem deci ca A verificd una dintre ecuatiile: D? = 41, sau D> £ D + I, = O,. In toate aceste
cazuri rezulta D® = I,, de unde concluzia.

d)Solutia 2 - Ideea de demonstratie. Pentru cel putin un subsir {z,, } dintre sirurile {a, }, {b,}, {c.}, {d.}
exista o multime infinita M C N astfel incat z, # 0 pentru orice n € M, altfel D" = 0, pen-
tru n suficient de mare. Fie t := Tr(D); din D? + I, = ¢tD deducem (D? + I,)" = ¢"D" de unde

n n
Z CkD? = " D™; aceasta implica Z CF2or = t"x,,. Trecand la module in aceasta egalitate si tinand
k=0 k=0

n
cont ca |xg,| < C pentru orice k si |z,| > 1 pentru orice n € M, deducem C Z CF ] > " pentru

k=0
orice n € M, deci C'- 2" > |t|™ pentru orice n € M. Cum M este infinita deducem [t] < 2.

Ca atare, D verifica o ecuatie de forma D? & I, = 0y sau D> £ D 41, = 0y sau D> £2D £ I, = O,.
Primul caz ne conduce direct la concluzie. Excludem cazurile D? = 2D + I, respectiv D? = D + I,
dupa cum urmeaza. Fie T, := Tr(D™); atunci girul {T,,} satisface recurenta T}, 1o = 27,41 + T}, (resp.
Thio = Thy1 + T,,) cu conditiile initiale Ty = T} = 2 (respectiv Ty = 2,77 = 1). In ambele situatii
rezulta ca girul {7,,} e nemarginit, contradictie cu faptul ca |T,,| < 2C pentru orice n.

In cazul D? = 2D — I, punand B := D — I, rezultd imediat B2 = Oy si deci D™ = I, + nB pentru
orice n; cum D e marginita rezulta B = Oy deci D = I,. Celelalte cazuri duc direct la concluzie,
eventual schimband D cu —D.



Problema 2. Consideram multimile

M ={f:[0,1] = R |f este de doud ori derivabila, f” continua si f'(0) = f'(1) = f(0) =0, f(1) = 1},

1 1

N={g:[0,1]] =R g continué,/g(:z:)dac = 0,/a:g(x)dx =1}

0 0

a) Fie a,b € R,a #05si go: [0,1] = R, go(x) = ax + b. Determinati a si b astfel incat go € N.

b) Demonstrati ca pentru orice g € N, functia f : [0,1] —» R, f(x) = / (t — x)g(t)dt, apartine
0
lui M.
c) Fie f € M si k > 0 astfel incat |f”(z)| < k pentru orice z € [0,1]. Aratati ca pentru orice

xz € [0,1] avem |f'(x)| < kmin{z,1 — x} si apoi, utilizand eventual aceasta inegalitate, demonstrati
ca |f(z)] < 4.

d) Demonstrati ca pentru orice f € M si g € N existd xg,yo € [0, 1] astfel incat |f”(xo)| > 4 si
9(yo)| = 4.

Rezolvari subiectul 2.

a) Deoarece gy € N obtinem atunci fol(ax + b)dr = 0 si fol(a$2 + bx)dxr = 1, de unde rezulta
5+b=0gi 35+ g = 1. Rezolvand sistemul de 2 ecuatii cu 2 necunoscute obtinem a = 12, b = —6 si
implicit functia go(x) = 12z — 6.

b) Cum f(z) = [ tg(t)dt — x [, g(t)dt rezultd c& f este derivabild si
fi@) =ag(a) ~ [ gt~ ag(o) = - [ glt)ar
0 0
Din faptul ca f'(z) = — [ g(t)dt obtinem cd f’ este derivabild si f"(z) = —g(z), (V) « € [0,1].

Deci f este de doua ori derlvablla f" este continua (pentru ca g este continua) si

f(1) = /tg(t)dt — /g(t)dt =1—-0=1 (deoarece g € N).

¢) Solutia 1. Observam ca f'(x) = [ f"(t)dt = [ f"(t)dt (V) x € [0,1], deci

'(2)] = / F(t)dt| < / POl < k-,
0 0

@l =| [ o) < [0 <kq-o,

de unde obtinem |f'(z)| < kmin{x,1 — x}.



Pentru a demonstra a doua inegalitate, folosind f(z) = [ f'(t)dt rezulta ca

|f(z)] < /f’(t)dt S/!f’(t)\dtg/lf’(tﬂdt.

Folosind inegalitatea demonstrata in prima parte a lui ¢) si inlocuind in ultima integrala obtinem
1 1 3 1
/ F)]dt < /kmin{t, | =t = k /tdt + /(1 _hydt | =
0 0 0 1
2
1
2 _— —

12 1 1 1 1 1 k
k(= =k({=-4+1—=—=+-]=-.
(2 0 i 2 ;) (8 * 2 2 * 8> 4
Solutia 2. Fie f € M. Pentru orice z > 0, z € [0, 1], aplicim teorema lui Lagrange functiei f’ pe

[0, z]. Rezulta ca exista 2’ € (0,x) astfel ca

f'(x) = f'(0)

1 2
+t

W,
Deci |f'(z)| = | f"(2")| - < ka. Pentru orice x < 1, aplicam teorema lui Lagrange functiei f’ pe [z, 1].
Rezulta ca exista z” € (z, 1) astfel incat
f,<1> — f’(l‘) _ f”(iﬂ”).

11—z
Deci |f'(x)] = |f"(«")|- (1 — x) < k(1 — ). Deducem ca |f'(z)| < kmin{z,1 — x} pentru orice
z € [0,1]. Cum f'(0) = f’(1) =0, avem |f'(x)| < kmin{z, 1 — z}, pentru orice x € [0, 1].

d) Solutia 1. Fie f € M. Cum |f”| continua pe [0,1], atunci |f”| este marginita si isi atinge
marginile. Fie xy € [0,1] astfel incat |f"(zo)| = max|f”(z)| = ko. Atunci rezulta ca |f"(z)| < ko,
(V) z €[0,1]. Folosind c) avem c& |f(z)| < %, (V) 2 € [0,1], deci in particular [f(1)| < £ si cum
f(1) =1 rezulta ca ky > 4 si implicit | f"(xo)| > 4.

Fie g € N. Folosind b) deducem c& f € M, unde f(z) = [(t — z)g(t)dt. In plus avem ci
f"(z) = —g(z), deci exista yy € [0, 1] astfel incat | f"(yo)| = |g(vo)| > 4.

Solutia 2. Fie g € N. Presupunem ca |g(x)| < 4, pentru orice z € [0,1]. Cum g este continuad pe

[0, 1], din teorema lui Weierstrass exista M > 0, M = m[%>1<] lg(x)| si M < 4.
ze|0,

Avem

/01 g(x)go(z)dr = /01(12x —6)g(z)dr =12 /01 zg(z)dr — 6/01 g(x)dx =12-1—-0=12.

Deci

1 1 1
12:/ (12x—6)g(m)dm§/ |12x—6|-|g(x)|dx§M/ 1122 — 6|da
0 0 0

1/2 1
=M (/ (6 — 12x)dx +/ (122 — 6)da:) =3M < 12,
0 1

/2
ceea ce reprezinta o contradictie. Asadar exista yo € [0, 1] cu |g(yo)| > 4.



Problema 3. In interiorul triunghiului ABC se alege la intamplare punctul D. Paralelele duse prin
D la BC, C'A, respectiv AB intersecteaza laturile triunghiului in punctele P gi S, N si R, respectiv
M si Q (unde M, N € BC; P,Q € AC; R,S € AB).

Demonstrati ca:

a) suma perimetrelor triunghiurilor DM N, DPQ si DRS este egala cu perimetrul triunghiului ABC

b) daca D este centrul de greutate al triunghiului ABC atunci el este centru de greutate si al tri-
unghiului M PR,

c¢) daca triunghiurile M PR gi SN(@Q au acelasi centru de greutate, atunci acesta coincide cu D;

d) suma ariilor triunghiurilor DM N, DPQ si DRS este cel putin o treime din aria triunghiului ABC,
iar aria triunghiului M PR este cel mult egala cu o treime din aria triunghiului ABC.

Rezolvari subiectul 3.

B M N

a) Deoarece BM DS, CNDP §i AQDR sunt paralelograme, avem: DS = BM; DP = NC; DM =
SB; DQ = RA; DN = PC; DR = AQ.
Se obtine imediat, de aici, ca
Ppyun + Pppg + Pprs = Pasc,

unde Ppyy este o notatie pentru perimetrul triunghiului DM N (si analogele).



b) Solutia 1. Avem lﬁ) = lB?, lﬁ = %C_jzl si W/_f = %1@ Deoarece /@ + B?+ CT>4 = 6>
deducem lﬁ + ﬁ + IW/I = 0 de unde rezulta ca D este centrul de greutate al triunghiului M RP.

Solutia 2. Daca D este centrul de greutate al triunghiului ABC, atunci constructia din enunt
partajeaza triunghiul ABC in noua triunghiuri care (se vede ugor ca) sunt congruente (ca in figura
de mai jos).

p®

In figura de mai sus, observam ca patrulaterul DPQR este un paralelogram. De aceea, dreapta
M D trece prin mijlocul segmentului PR, deci D se afla pe mediana din M a triunghiului M PR.
Analog, deducem ca punctul D se afla i pe mediana din P a triunghiului M PR, adica D este centrul
de greutate al acestui triunghi.

c¢) Fie G; si Gy centrele de greutate ale triunghiurilor M PR, respectiv N@QS. Atunci:
Tt e
3DG, — DM + DP + DE: 3DGy — DN + DO + DS,

Deducem ca

(1) Gy =Gy & DG, = DGy < DM + DP + DI = DN + DQ + DS

adica

e
Deoarece PS || BC' i NR || AC, vectorii MN + lﬁ, respectiv Q? + lﬁ% au directiile date de
dreptele concurente BC', respectiv AC. De aceea, acesti vectori pot fi egali doar daca sunt vectori
nuli. Deducem de aici ca

G1=Gy= MN =SDsi PQ = RD.
Un rationament analog (in care grupam altfel termenii din (1)) conduce la concluzia ca

Gy =Gy=MN =DP, PQ) =DN,RS =DQ,RS = DM.

Am aratat deci ca, daca G; = Gs, punctul D este mijlocul fiecaruia din segmentele MQ, NR, PS.
Putem folosi aceleasi argumente ca in demonstratia punctului b) pentru a deduce ca D este centrul
de greutate (comun) al triunghiurilor M PR gi SNQ.

d) Observam mai intai ca triunghiurile DM N, QDP si RSD sunt asemenea cu triunghiul ABC
(si, desigur, asemenea intre ele); notam x,y, respectiv z rapoartele de asemanare dintre aceste trei
triunghiuri si triunghiul ABC' (deci: MN/BC =z, PQ/AC =y, RS/AB = z).



Deoarece MN + DP +SD = MN + NC + BM = BC, deducem ca
= MN DP SD ot
BC "B o TYTH

Din asemanarea triunghiurilor DMN,QDP si RSD cu triunghiul ABC, avand rapoartele de
asemanare x,y, respectiv z, deducem ca

Apun = 2*Aape; Agpp = Y* Aapc; Arsp = 2> Aape,
unde Apyn este o notatie pentru aria triunghiului DM N (si analogele).

Folosind, de exemplu, inegalitatea
3@+ 0>+ %) > (a+b+c)

(valabila pentru orice trei numere reale a, b, ¢), precum si faptul ca x + y + z = 1, deducem ca

T+ y+2)? 1
Apun + Aqpp + Arsp = (2° + y° + 2°) Aupc > QAABC = gAABC-
Pentru a doua parte a punctului d), indicam in continuare mai multe posibile solutii.

Solutia 1.
Observam ca

Aypr = Apmp + Appr + Apru

Pe de alta parte:

1

ADMP = ADCP = EADNC'Pa

(analog pentru Appr si Aprar), deci

1 1
Avpr = Apmpr+Appr+Aprm = §<ABMDS+AC’NDP+AAQDR) = 5(AABC_(ADMN+ADPQ+ADQR))-

Folosind rezultatul anterior, deducem ca

Solutia 2 - Ideea de demonstratie.
Exprimam aria triunghiului M PR ca diferenta intre aria triunghiului ABC' i suma ariilor triunghi-
urilor BMR,CPM si ARP. Ne folosim de egalitatea:

Apur  BM BR
Apac  BC "BA

Procedand analog pentru celelalte doua triunghiuri, obtinem:

2z + 2).

Aypr=1—=2(x+2) —ylz +y) —2(y +2)) - Aapc = (vy + vz +yz) - Aapc

(am tinut cont de relatia z +y+ 2z = 1). Deoarece 3(xy + 22 +yz) < (r+y+ 2)? = 1, obtinem relatia
din enunt.

Solutia 3 -Ideea de demonstratie.

—
Observam ca DM = (x + y)ﬁ + z? deoarece %Jg = gg = z,lar x +y + 2z = 1. Analog:

—fé y—I—z?ﬁLxDA —}>{ (x+2)D A—l—yﬁ.



Consideram un sistem de axe ortogonale, cu originea in D si exprimam aria triunghiului M PR cu
ajutorul unui determinant; folosind egalitatea x 4+ y + 2z = 1, pentru a inlocui numerele de pe una din
liniile determinatului, obtinem ca:

Appr = (zy +yz + 22) - Aape,

de unde se obtine inegalitatea ceruta.



